[关键词]
[摘要]
[摘要] 目的:构建载吲哚菁绿二氧化硅纳米颗粒(ICG@MSNs)并探讨其对宫颈癌HeLa细胞的杀伤作用。方法:通过模板法合成了介孔二氧化硅纳米颗粒(MSNs),并物理包载光热剂吲哚菁绿(ICG),制备具有光热效应的ICG@MSNs,并将其应用到HeLa细胞的体外研究中。结果:ICG@MSNs的粒径约200 nm,粒径均一,为形态规则的球形。ICG@MSNs与单纯的ICG具有类似的光热效应。细胞内吞实验显示,ICG包载于二氧化硅纳米颗粒后更易被肿瘤细胞内吞,进而发挥光热作用杀死宫颈癌HeLa细胞;细胞毒性实验表明,在808 nm激光照射下ICG@MSNs对细胞毒性作用明显增加,可以显著杀死宫颈癌HeLa细胞。结论:ICG@MSNs稳定性和生物相容性良好,同时具有良好的产热性能,肿瘤光热治疗效果明显,应用于宫颈癌治疗的前景良好
[Key word]
[Abstract]
[Abstract] Objective: To construct indocyanine green-loaded silica nanoparticles (ICG@MSNs) and evaluate their killing effect on cervical cancer HeLa cells. Methods: Mesoporous silica nanoparticles (MSNs) were synthesized by template method, and indocyanine green (ICG) containing photothermal agent was loaded to prepare ICG@MSNs with photothermal effect, which were applied in the research of HeLa cells in vitro. Results: The particle of ICG@MSNs was uniform and in regular spherical shape with the size about 200 nm. ICG@MSNs was similar photothermal effect with pure ICG. Cell endocytosis experiments showed that ICG encapsulated in silica nanoparticles is more likely to be endocytosed by tumor cells, and then played a photothermal role in killing cervical cancer HeLa cells. On the other hand, cytotoxicity experiments showed that under the irradiation of 808 nm laser, ICG@MSNs significantly increased cytotoxicity, which could significantly kill cervical cancer HeLa cells. Conclusion: ICG@MSNs has good stability and biocompatibility,as well as good thermogenesis. It’s photothermal treatment effect on tumor is obvious, which has a good prospect for the treatment of cervical cancer.
[中图分类号]
[基金项目]
国家自然科学青年基金资助项目(No.1701444);中华医学会临床医学科研专项(No.17020380707)