DOI: 10.3872/j.issn.1007-385X.2009.03.004

• 基础研究 •

Survivin HLA-A2⁺ 高亲和性 CTL 表位的预测及鉴定

陈明水,陈 强,李洁羽,周智锋,陈淑萍,叶韵斌*(福建医科大学 教学医院 福建省肿瘤医院 肿瘤免疫研究室,福州 350014)

[关键词] survivin; CTL 表位; T2 细胞; 生物信息方法

[中图分类号] R730.3; R392.1 [文献

[文献标志码] A [文章编号] 1007-385X(2009)03-0227-05

Prediction and identification of survivin specific HLA-A2 + CTL restricted high affinity epitope

CHEN Ming-shui, CHEN Qiang, LI Jie-yu, ZHOU Zhi-feng, CHEN Shu-ping, YE Yun-bin* (Immuno-oncology Laboratory of Fujian Tumor Hospital, Teaching Hospital of Fujian Medical University, Fuzhou 350014, Fujian, China)

[**Abstract**] **Objective:** To predict and identify survivin specific HLA-A2 ⁺ CTL restricted epitopes by bio-informatic methods, so as to provide a foundation for survivin-based immunotherapy. **Methods:** Survivin specific HLA-A2 ⁺ restricted CTL epotides were predicted by computer super-motif algorithm combined with quantitative-motif algorithm. Candidate epitopes were verified when their scores were higher than 10 and were then artificially synthesized. Affinity of candidate epitope was examined by HLA-A2 binding assay combined with flow cytometry using T2 cells (shown as fluorescence index, FI). Stability of candidate epitope was evaluated by HLA-A2 dissociation assay combined with flow cytometry (shown as 50% complex dissociation time, DC50). **Results:** Nine candidate epotides were obtained: ²⁰STFKNWPFL²⁸ (SV₂₀₋₂₈), ²³KNWPFLEGC³¹ (SV₂₃₋₃₁), ⁹⁶LTLGEFLKL¹⁰⁴ (SV₉₆₋₁₀₄), ⁶LPPAWQPFL¹⁴ (SV₆₋₁₄), ³³CTPERMAEA⁴¹ (SV₃₃₋₄₁), ⁴⁶CPTENEPDL⁵⁴ (SV₄₆₋₅₄), ¹³⁰KVRRAIEQL¹³⁸ (SV₁₃₀₋₁₃₈), ³⁷RMAEAGFIH⁴⁵ (SV₃₇₋₄₅), and ⁸⁸SVKKQFEEL⁹⁶ (SV₈₈₋₉₆). HLA-A2 binding assay showed that FI values of SV₂₀₋₂₈, SV₉₆₋₁₀₄, SV₁₃₀₋₁₃₈ and SV₂₃₋₃₁ epotides were 8. 61, 6. 88, 5. 89 and 3. 81, respectively; those of SV₃₃₋₄₁, SV₆₋₁₄, SV₄₆₋₅₄, SV₃₇₋₄₅ and SV₈₈₋₉₆ epotides were 0. 31, -0. 29, -0. 4, -0. 16 and -0. 03, respectively. HLA-A2 dissociation assay showed that DC₅₀ values of SV₂₀₋₂₈, SV₉₆₋₁₀₄ and SV₁₃₀₋₁₃₈ epotides were longer than 8 h; that of SV₂₃₋₃₁ epotide was 4-6 h; those of SV₆₋₁₄, SV₃₃₋₄₁ and SV₈₈₋₉₆ epotides were all

[[]基金项目] 福建省科技发展计划重点项目(No. 2008I0012)。 Supported by the Key Science and Technology Development Program of Fujian Province (No. 2008I0012)

[[]作者简介] 陈明水(1967-),男,福建省福州市人,副主任医师,主要从事肿瘤免疫学研究,Email;mschen9401@ yahoo.com.cn

^{*} 通讯作者(Corresponding author). E-mail: yunbin_ye @ yahoo. com

2-4 h; those of $SV_{46.54}$, $SV_{37.45}$ epotides were both 0-2 h. The above results demonstrated that $SV_{20.28}$, SV_{96-104} and $SV_{130-138}$ were high affinity epotides; $SV_{23.31}$ was intermediate affinity epotide; and $SV_{33.41}$, $SV_{6.14}$, $SV_{46.54}$, $SV_{37.45}$ and $SV_{88.96}$ were low affinity epotides. **Conclusion**: Antigen epitope can be quickly and efficiently predicted by super-motif algorithm combined with quantitative-motif algorithm. $SV_{20.28}$, SV_{96-104} and $SV_{130-138}$ epitopes are survivin specific HLA-A2 $^+$ restricted CTL epotides, which can be used for later research.

[Key words] survivin; CTL epitope; T2 cell; bio-informatic method

[Chin J Cancer Biother, 2009, 16(3): 227-231]

Survivin(简称 SV)是抗凋亡蛋白(inhibitor of apoptosis, IAPs)家族的新成员,是迄今发现最强的凋亡抑制因子。该基因在正常成人终末分化组织(除胚胎、胸腺和睾丸)中不表达或低表达,而在绝大多数肿瘤组织呈阳性表达^[1]。Survivin 的高表达可通过多种机制抑制多种因素诱导的细胞凋亡,并与肿瘤的不良预后密切相关。这种广泛的分布提示survivin 基因的表达可能在癌症中失控,很可能会成为一个新的肿瘤标记物及肿瘤基因防治的靶基因,用于肿瘤的基因免疫治疗。

表位(epitope)是蛋白抗原经抗原提呈细胞(antigen presenting cell, APC)加工处理,继而与 MHC I类分子结合并最终提呈给 T细胞受体(TCR)识别,引起有效免疫应答的短肽,一般为 8~10个氨基酸,是引起免疫应答和免疫反应的基本单位。筛选和鉴定合适的抗原表位是研制多肽疫苗的前提^[2]。HLA-A2⁺是在人群中最普遍表达的等位基因,在我国超过 50% 的人表达 HLA-A2⁺。因此,由 HLA-A2.1 分子递呈的肿瘤抗原肽表位诱导的 CTL 在肿瘤免疫治疗中具有重要意义。本研究采用超基序、量化基序法对靶抗原 survivin HLA-A2⁺限制性 CTL表位进行预测,为针对 survivin 表位的后续研究奠定基础。

1 材料与方法

1.1 靶抗原

选择在肿瘤组织中高表达、而在正常组织中低表达或不表达的 survivin 作为靶抗原,此抗原位于17 号染色体的 q25 区,相对分子质量为 16 500,由142 个氨基酸残基组成,登陆号为 XM 512010,其编码的蛋白质序列(摘自 Genebank)如下:MGAPTLP-PAWQPFLKDHRISTFKNWPFLEGCACTPERMAEAGFIHCPTENEPDLAQCFFCFKELEGWEPDQDPIEEHKKHSSGCAFLSVKKQFEELTLGEFLKLDRERAKNKIAKETNNKKKEFEETAKKVRRAIEQLAA MD。

1.2 主要实验材料

T2 细胞购自 ATCC。T2 + HIV-1 POL 476(序列

为 ILKEPVHGV)由 GenScript 公司合成。单抗 BB7. 2 购自 BD Pharmingen 公司;无血清 AIM-V 培养基购自 Gibco 公司; β2-M、Brefeldin A 购自 Sigma 公司;胎牛血清购自 Hyclone 公司。FACS Calibur 流式细胞仪购自 BD 公司。

1.3 超基序法预测 survivin 表位

采用 SYFPEITHI 抗原肽预测软件,扫描 survivin 抗原的氨基酸序列,对 survivin 的 HLA-A2 限制性 CTL 表位进行远程预测,预测由 9 个氨基酸残基组成的 CTL 表位。利用 Intenet 网络进入 SYFPE1THI 主页(http://www.syfpeithi.de/home.htm),选择 Epitope prediction 进入 CTL 表位预测界面。于 < Select MHC type > 复选框选定 CTL 表位限制性 MHC 类型为 HLA-A * 0201,表位肽大小选 9 肽,得出一系列候选表位,选择得分大于 10 的表位进一步分析。

1.4 量化基序法预测 survivin 表位

利用量化基序法(BIMAS)预测软件,在序列输入框中输入 survivin 序列,〈HLA molecule〉选定HLA-A*0201,表位肽大小选9肽,输出结果确切表位数选30,运行软件,得出一系列候选表位。

1.5 多肽的合成

选取超基序和量化基序法中得分较高的表位肽进行合成,表位肽由 GenScript 公司合成、纯化。

1.6 HLA-A2 结合实验检测侯选表位肽的亲和力

亲和力检测参照文献[3]方法,即 T2 细胞用含 10% 胎牛血清的 RPMI 1640 培养基体外培养,用 AIM-V 培养基调细胞密度至 1×10^6 /ml,接种于 24 孔培养板,1 ml/孔;加入浓度为 10 μmol/L 各侯选表位肽和 β2-M(3 μg/ml);以 T2 $^+$ β2-M 作为阴性对照, T2 $^+$ POL 476(ILKEPVHGV)作为阳性对照, 37 $^{\circ}$ C、5% CO₂ 孵育 21 h, PBS 洗涤 3 次,加入 FITC标记的 HLA-A2 单抗 BB7. 2,孵育 15 min,PBS 洗涤 2 次,流式细胞术检测 T2 细胞表面 HLA-A2 分子的平均荧光强度(mean intensity of fluoresence, MIF)。以荧光系数(fluoresence index, FI)衡量亲和力,FI=(实验组 MIF – 阴性对照组 MIF)/阴性对照

组 MIF。FI > 1 表示多肽与 HLA-A2 有较高亲和力。 1.7 HLA-A2 解离实验检测侯选表位肽的稳定性

侯选表位肽稳定性检测参照文献[4]方法,即T2细胞用含10%胎牛血清的RPMI1640培养基培养,用AIM-V培养基调细胞密度至1×10 6 /ml,接种于24孔培养板,1 ml/孔;加入浓度为10 μmol/L各侯选表位肽和β2-M(3 μg/ml);37 ℃、5% CO₂ 孵育21 h, PBS 洗涤3次以去除多余的表位肽,加入AIM-V培养液、以阻断新合成的HLA-A2在T2细胞表面的表达。37℃、5% CO₂ 孵育1 h, 洗涤,重新置37℃、5% CO₂ 孵育,以2 h 为间隔,收集0、2、4、6、8 h 的细胞加入BB7.2 抗体,室温孵育15 min,PBS 洗涤3次,流式细胞仪检测T2细胞表面HLA-A2分子的荧光强度。结果用DC₅₀(dissociation complex 50%)表示,DC₅₀表示每个肽在t=0时的荧光强度减弱到50%时所需的时间,即50%MHC-肽复合物解离所需的时间。

2 结 果

2.1 Survivin HLA-A2+ CTL 表位预测结果

综合 survivin 超基序法中的得分及在量化基序 法中的得分,选择在两种预测方法中都出现的且综 合两者得分(两者得分相乘)较高的9个表位肽为 侯选表位肽(表1)。

表 1 SYFPEITHI 法与 BIMAS 法预测得分较高的表位肽 Tab. 1 Scores of candidate epitopes predicted by SYFPEITHI and BIMAS

Epitope sequence	SYFPEITHI score	BIMAS score	Total*	
$^{20} \rm STFKNWPFL^{28}$	18	10. 264	184.75	
²³ KNWPFLEGC ³¹	10	4.035	40.35	
⁹⁶ LTLGEFLKL ¹⁰⁴	23	3.546	81.56	
$^6\mathrm{LPPAWQPFL^{14}}$	13	1.304	16.95	
³³ CTPERMAEA ⁴¹	14	0.651	9.11	
⁴⁶ CPTENEPDL ⁵⁴	12	0.572	6.86	
$^{130}\mathrm{KVRRAIEQL}^{138}$	19	0.560	10.64	
³⁷ RMAEAGFIH ⁴⁵	12	0.525	6.3	
⁸⁸ SVKKQFEEL ⁹⁶	17	0.061	1.04	

^{*} Total score = SYFPEITHI score × BIMAS score

2.2 侯选表位肽的亲和力

亲和力分析显示,9条侯选肽中有4条FI>1,

说明这些侯选肽与 HLA-A2 具有较强的结合力;5 条 FI < 1,说明该5条侯选肽与 HLA-A2 结合力较弱 (表2)。

表 2 候选表位肽的亲和力分析

Tab. 2	Affinity	of	candidate	epitopes	
					_

Epitope position	Sequence	Fluorescent intensity	FI
	Negative control	16.32	
	POL476(ILKEPVHGV)	216.76	12.28
20-28	STFKNWPFL	156.82	8.61
23-31	KNWPFLEGC	78.46	3.81
96-104	LTLGEFLKL	128.53	6.88
6-14	LPPAWQPFL	11.57	-0.29
33-41	CTPERMAEA	21.43	0.31
46-54	CPTENEPDL	9.86	-0.4
130-138	KVRRAIEQL	112.37	5.89
37-45	RMAEAGFIH	13.75	-0.16
88-96	SVKKQFEEL	15.83	-0.03

2.3 侯选表位肽的稳定性

稳定性分析显示, SV_{20-28} 、 SV_{96-104} 、 $SV_{130-138}$ 的 $DC_{50} > 8 h; SV_{23-31}$ 的 DC_{50} 为 $4 \sim 6 h;$ 其余表位肽的 DC_{50} 均 < 4 h,如图 1、表 3。

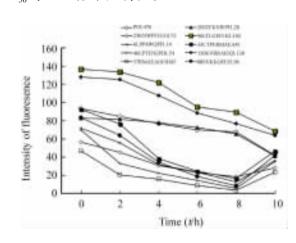


图 1 侯选肽的稳定性鉴定 Fig. 1 Stability of candidate epitopes

rig. 1 Stability of California epitopes

由以上实验结果把预测的 survivin 表位肽分成 3 组:(1)高亲和力表位肽,与 HLA-A2 结合力强,形成稳定的肽/HLA-A2 复合物,它们是 SV₂₀₋₂₈、

 SV_{96-104} 、 $SV_{130-138}$;(2)中等亲和力表位肽,与 HLA-A2 结合力较弱,但能形成稳定的肽/HLA-A2 复合物,仅一个 SV_{23-31} ;(3)低亲和力表位肽,与 HLA-A2 不能形成稳定的肽/HLA-A2 复合物,它们是 SV_{6-14} 、 SV_{33-41} 、 SV_{46-54} 、 SV_{37-45} 、 SV_{88-96} 。

表 3 候选表位肽在不同时间的荧光强度(%) Tab. 3 Fluorescence intensities of candidate epitopes at different time points

	Time (<i>t</i> /h)				DC 50	
Epitope	0	2	4	6	8	(t/h)
POL476(ILKEPVHGV)	93.41	84.56	76.63	69.72	67.71	15.60
²⁰ STFKNWPFL ²⁸	82.67	81.65	77.52	72.43	65.37	13.75
²³ KNWPFLEGC ³¹	56.42	44.93	30.76	22.83	18.37	5.37
⁹⁶ LTLGEFLKL ¹⁰⁴	136.78	133.52	121.69	94.83	89.41	9.26
⁶ LPPAWQPFL ¹⁴	71.64	55.43	31.52	23.61	12.46	2.61
³³ CTPERMAEA ⁴¹	92.38	76.53	38.32	24.16	16.37	3.06
⁴⁶ CPTENEPDL ⁵⁴	69.82	32.74	22.32	14.51	5.73	0.86
¹³⁰ KVRRAIEQL ¹³⁸	127.74	125.26	107.32	88.53	76.92	10.57
³⁷ RMAEAGFIH ⁴⁵	46.62	20.43	15.62	8.46	3.52	1.43
88 SVKKQFEEL 96	83.36	63.58	34.26	18.54	8.37	3.62

3 讨论

肿瘤免疫治疗是肿瘤综合治疗的重要组成部 分,CTL 是最主要的抗肿瘤效应细胞,它能直接溶解 肿瘤细胞,而且能分泌一系列细胞因子,如 IFN-y、 TNF和GM-CSF等,进一步增强机体对肿瘤的免疫 反应^[5]。以特异性 CTL 为基础的肿瘤免疫治疗的 关键在于确定合适的肿瘤抗原,但免疫细胞不能识 别整个抗原分子,而只能识别抗原分子表面的活性 部位,即抗原决定簇或表位。表位是抗原中能被免 疫细胞特异性识别的线性片段或空间构象性结构。 CTL 识别抗原是以表位为基础,T 细胞表位是蛋白 抗原经抗原提呈细胞加工处理,继而与 MHC- I 类 分子结合并最终提呈给 T 细胞受体(TCR)识别,引 起有效免疫应答的短肽,是引起免疫应答和免疫反 应的基本单位,设计和鉴定合适的抗原表位是诱导 免疫反应的前提。以往对于一个已知序列的肿瘤抗 原,筛选其优势 CTL 表位通常是用酸洗脱法,将肿 瘤细胞上与 MHC- I 类分子结合的抗原肽洗脱下

来,再逐一合成重叠肽,用T细胞功能试验的方法, 对侯选表位进行鉴定,并比较各候选肽诱导特异性 CTL杀伤效应的能力。这一过程不仅难度高、花费 大,而且效率低。随着人们对 MHC- [类分子的晶 体结构的阐明,以及对表位肽与 MHC- I 类分子结 合特性和 MHC- I 类抗原提呈途径认识的不断深 入,应用生物信息学的技术手段进行表位预测已经 成为可能^[6]。目前用于 CTL 表位预测方法主要有 基于抗原肽与 MHC- [类分子结合特性的预测方法 和针对抗原加工处理过程的表位预测方法。现有多 种用于 CTL 表位预测的程序,其中最为常用的是 Parker 等^[7]开发的 BIMAS 程序和 Rammensee 等^[8] 开发的 SYFPEITHI。BIMAS 是根据抗原九肽与 HLA- I 分子结合的半衰期进行预测,它可以对 40 多种不同种属的 MHC- I 类限制性表位进行预测。 SYFPEITHI 是根据抗原肽初级和次级锚定残基与 MHC 结合的特征计算其亲和力积分,如锚定残基 8~10分,辅助残基4~6分,有利结合残基1~4分, 不利结合残基-1~-4分,各个氨基酸残基得分之 和即为该九肽积分。它可以预测 200 余种不同种属 不同 MHC- I 类分子的 CTL 表位。

细胞凋亡的抑制在肿瘤发生发展及耐药形成中 具有重要作用,凋亡抑制蛋白(IAPs)可以通过抑制 caspase-3、caspase-7的活性从而抑制细胞凋亡[9],保 护肿瘤细胞免受凋亡损伤。Survivin 是凋亡抑制蛋 白超家族成员之一,定位于17q25,含4个外显子及 3个内含子。其编码的蛋白是由 142 个氨基酸组成 的胞质蛋白,分子量为16.2 kD,含有一个杆状病毒 凋亡抑制蛋白重复序列(baculovirus IAP repeat, BIR)分子,该结构域含有70~80个氨基酸残基,它 首次在杆状病毒抗凋亡蛋白中发现,它能抑制细胞 凋亡促进细胞增殖^[10]。Survivin 的高表达与细胞的 恶性转化有关,肿瘤组织中 survivin 的高表达能促 进肿瘤的生长,并且与肿瘤细胞耐受放疗、化疗,肿 瘤患者的总体存活率、肿瘤的复发及不良预后密切 相关[11-12]。Survivin 在 60 多种肿瘤中高表达,在正 常组织中低表达或不表达[13],是肿瘤治疗的理想靶 点。迄今已鉴定出多种 survivin 来源的多肽表位, 分别由 HLA-A1、HLA-A2、HLA-A3、HLA-A11、HLA-A24 等提呈,能在体内外诱导特异性 CTL 反 应[14-16]。

本研究以超基序法、量化基序法相结合,预测了 9 条 HLA-A2 限制性 survivin CTL 表位,分别为 SV_{20-28} 、 SV_{96-104} 、 $SV_{130-138}$ 、 SV_{23-31} 、 SV_{6-14} 、 SV_{33-41} 、 SV_{46-54} 、 SV_{37-45} 、 SV_{88-96} ,对这些九肽的进一步鉴定将为基于

CTL 表位肽的免疫治疗及表位疫苗的研究提供更多的线索。

表位肽与 MHC 分子结合的亲和力和稳定性是 能否引起有效 CTL 应答的关键因素[17],并决定诱导 免疫应答的性质。研究表明,低亲和力的抗原肽以 诱导免疫耐受为主,而高亲和力的抗原肽以诱导免 疫应答为主[18]。为了证实所预测的表位是否是 CTL 表位, 用 T2 细胞检测所预测的表位与 HLA-A2 结合的亲和力和稳定性。T2 细胞是用于测定表位 肽与 HLA-A2 分子结合力的工具细胞之一,它是 T-B 杂交瘤细胞系,是 HLA-A2 阳性、TAP 分子缺陷的 细胞株。该细胞不能加工内源性的抗原,但是可以 提呈外源性的抗原肽;在无抗原肽存在的情况下,其 细胞表面 HLA-A2 分子的表达不稳定。T2 细胞表 面的 HLA-A2 分子与抗原肽结合,其细胞表面 HLA-A2 的表达明显增强,所以利用其与目的肽的结合程 度来测定 HLA-A2 分子与目的肽表位间的亲和力。 本研究检测结果显示, 候选肽 SV₂₀₋₂₈、SV₉₆₋₁₀₄、 SV₁₃₀₋₁₃₈与 T2 细胞具有较高的亲和力,能形成稳定 的复合物。

本研究表明,超基序法和量化基序法可快速并有效预测抗原表位。随着越来越多肿瘤抗原的发现,利用计算机算法筛选 HLA-A2⁺高亲和性肿瘤抗原 CTL 表位,并用筛选出的高亲和性表位肽诱导肿瘤抗原特异性的 CTL,这种方法将为肿瘤预防和免疫治疗提供一新的手段。

[参考文献]

- [1] Li F. Survivin study: what is the next wave[J]? J Cell Physiol, 2003, 197(1): 8-29.
- [2] Kessler JH, Melief CJM. Identification of T-cell epitopes for cancer immunotherapy [J]. Leukemia, 2007, 21(3): 1859-1874.
- [3] Seki N, Brooks AD, Carter CR, et al. Tumor-specific CTL kill murine renal cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the absence of perforin[J]. J Immunol, 2002, 168(7): 3484-3892.
- [4] Tourdot S, Scardino A, Saloustrou E, et al. A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes [J]. Eur J Immunol, 2000, 30: 3411-3421.
- [5] Lanzavecchia A. Identifying strategies for immune intervention [J]. Science, 1993, 260(511): 937-944.

- [6] Bhasin M, Raghava GP. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes[J]. J Biosci, 2007, 32(1): 31-42.
- [7] Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains [J]. J Immunol, 1994, 152(1): 163-175.
- [8] Rammensee H, Bachmann J, Emmerich NP, et al. SYFPEITHY database for MHC ligands and peptide motifs[J]. Immunogenetics, 1999, 50(1): 213-219.
- [9] Andersen MH, Becker JC, Straten P. Regulators of apoptosis: suitable targets for immunetherapy of cancer[J]. Nature, 2005, 4 (5): 399-409.
- [10] Duffy MJ, O'Donovan N, Brennan DJ, et al. Survivin: a promising tumor biomarker J]. J Cancer Lett, 2007, 249(1): 49-60.
- [11] Allen SM, Florell SR, Hanks AN, et al. Survivin expression in mouse skin prevents papilloma regression and promotes chemicalinduced tumor progression [J]. Cancer Res, 2003, 63(3): 567-572.
- [12]Williams NS, Gaynor RB, Scoggin S, et al. Identication and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference [J]. Clin Cancer Res., 2003, 9(3): 931-946.
- [13] Fukuda S, Pelus LM. Survivin, a cancer target with an emerging role in normal adult tissues[J]. Mol Cancer Ther, 2006, 5(5): 1087-1098.
- [14] Reker S, Meier A, Holten-Andersen L, et al. Identification of novel survivin-derived CTL epitopes [J]. Cancer Biol Ther, 2004, 3 (2): 173-179.
- [15] Andersen MH, Pedersen LO, Capeller B, et al. Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I -restricted T-cell epitopes in situ as well as ex vivo in cancer patients [J]. Cancer Res, 2001, 61(16): 5964-5968.
- [16] Hirohashi Y, Torigoe T, Maeda A, et al. An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin[J]. Clin Cancer Res., 2002, 8(6): 1731-1739.
- [17] Franco A, Tilly DA, Gramaglia I, et al. Epitope affinity for MHC class I determines helper requirement for CTL priming [J]. Nat Immunol, 2000, 1 (2): 145-150.
- [18] Eliada L, Vasso A. Insights into peptide-based vaccine design for cancer immunotherapy[J]. Curr Med Chem, 2005, 12(13): 1481-1494.

[收稿日期] 2009-02-16 [修回日期] 2009-04-21 [本文编辑] 韩 丹