DOI: 10.3872/j.issn.1007-385X.2012.04.015

• 转化医学 •

Crizotinib 治疗 EML4-ALK 阳性晚期非小细胞肺癌的临床转化研究

Translational research on crizotinib in EML4-ALK positive advanced non-small cell lung cancer

李嘉瑜,李雪飞,周彩存(同济大学 附属上海市肺科医院 肿瘤科,上海 200433)

[摘 要] 棘皮动物微管相关蛋白样 4(echinoderm microtubule associated protein like 4, *EMIA*)间变性淋巴瘤激酶(anaplastic lymphoma kinase , *ALK*)融合基因(*EMIA-ALK*)是近年来新发现的癌变驱动基因,该融合基因阳性的非小细胞肺癌(non-small cell lung cancer , NSCLC)患者有其独特的临床特征,可能与表皮生长因子受体(epidermal growth factor receptor, EGFR)酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)耐药相关。针对 *EMIA-ALK* 基因突变的新靶向药物——ALK 抑制剂 crizotinib,现已经进入Ⅲ期临床试验。Ⅰ期及Ⅱ期临床试验均证实, crizotinib 治疗 *EMIA-ALK* 阳性晚期 NSCLC 患者有效,能够改善肿瘤患者症状,患者的无进展生存期(progression free survival, PFS)延长,总体有效率(overall response rate, ORR)提高。且 crizotinib 的毒性作用较小,与传统化疗相比,患者耐受性较好。与其他 TKI 一样, crizotinib 也存在获得性耐药现象, 其耐药机制有待进一步研究。本文就 crizotinib 从基础研究向治疗 *EMIA-ALK* 阳性晚期 NSCLC 患者临床应用的转化过程作一回顾。

[关键词] crizotinib; 非小细胞肺癌; EML4-ALK; 靶向治疗

[中图分类号] R734.2; R730.54

[文献标志码] A

[文章编号] 1007-385X(2012)04-0428-05

大部分肺癌起病隐匿,就诊时已处于疾病晚期, 通常针对这些患者的治疗只能缓解症状,预后很差。 近年来传统化疗对这些晚期肺癌患者的疗效已达到 平台期[12],期待着新的药物或治疗策略的出现,以 改变患者的预后。以酪氨酸激酶为靶点的靶向治疗 在特定基因亚群的癌症患者中取得了较好的效果。 例如表皮生长因子受体(epidermal growth factor receptor, EGFR)酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI) 吉非替尼(gefitinib)和厄洛替尼(erlotinib),它们与 ATP 竞争结合 EGFR 酪氨酸激酶催 化区域,抑制 EGFR 酪氨酸激酶自身磷酸化及下游 的信号转导,起到抗肿瘤的作用。棘皮动物微管相 关蛋白样 4(echinoderm microtubule associated protein like 4, EML4)间变性淋巴瘤激酶(anaplastic lymphoma kinase, ALK)融合基因(EMLA-ALK)是新发现的 非小细胞肺癌(non-small cell lung cancer, NSCLC) 的癌变驱动基因[3],而 crizotinib 是 ALK 及 c-MET 信号通路抑制剂,已在 ALK 阳性的间变性大细胞淋 巴瘤及炎性肌纤维母细胞瘤患者中取得了较好的疗 效^[45]。从 crizotinib 的实验研究到成功地进入 I、 Ⅱ、Ⅲ期临床试验,这是转化医学的典型案例,本文 就 crizotinib 治疗 EML4-ALK 阳性晚期 NSCLC 的临 床试验作一回顾。

1 EML4-ALK 融合基因的结构

EML4 属于棘皮动物微管相关蛋白样蛋白家族

成员,由 N 末端碱基区、疏水的棘皮动物微管相关 蛋白区(hydrophobic echinoderm microtubule-associated protein-like protein, HELP)以及 WD 重复区 3 部 分构成^[6]。ALK 属于胰岛素受体家族成员,该蛋白 由膜外部分、穿膜区域以及膜内催化区域组成[7]。 EML4 和 ALK 分别位于 2p21 和 2p23,两者之间相隔 约120 000 bp 个碱基对。2 号染色体短臂易位形成 了 EMLA-ALK 融合基因,即 EMLA 不同程度地被截 断,倒置后连接于保留酪氨酸激酶活性的截断 ALK 上,就形成了不同的 EML4-ALK 融合基因,并表达 EML4-ALK 融合蛋白[3,8-10]。根据 EML4 的截断部 位及长短不同, EML4-ALK 至少有 11 种变异体。而 EML4 的三个结构区域均在 EML4-ALK 融合基因异 常激活中起重要作用^[1,3,11]。2007 年, Soda 等^[3]在 一例 NSCLC 患者的组织标本中首次发现 EML4-ALK 融合基因。此后的许多研究[12-16]发现,NSCLC 患者 中有3%~7%的患者含有该融合基因。

[[]基金项目] 国家自然科学基金资助项目(No. 81172101)。 Project supported by National Natural Science Foundation of China (No. 81172101)

[[]作者简介] 李嘉瑜(1987 –),女,浙江省宁波市人,博士,主要从事肺部肿瘤的基础与临床研究。E-mail;hshr2005@163.com

[[]通信作者] 周彩存(ZHOU Cai-cun, corresponding author), E-mail: caicunzhou@vahoo.com.cn

2 EMLA-ALK 融合基因与 NSCLC

为了验证 EMIA-ALK 融合基因的致瘤作用, Soda 等^[17]将转染了 EMIA-ALK 融合基因的小鼠 3T3 细胞接种到裸鼠,建立了能够在肺上皮细胞中特异表达 EMIA-ALK 蛋白的转基因裸鼠模型。针对 ALK 的免疫组化确证小鼠腺癌细胞胞质中有棕色颗粒聚集,这与 EMIA-ALK 融合基因阳性患者的特点相吻合。低水平的 EMIA-ALK 蛋白在小鼠中亦可引发肺部肿瘤,更证明 EMIA-ALK 在 NSCLC 发生中起了重要的作用。

除了 EMLA-ALK 外,在 NSCLC 中同时也发现了其他 ALK 融合基因的存在,如 TGF-ALK,KIF5B-ALK 等 [18-21],但这些融合基因的发生率较 EMLA-ALK 低。 NPM-ALK 是淋巴瘤中研究得最透彻的 ALK 融合基因 [7],可激活 MEK/ERK、PI3K/AKT 及 JAK/STAT3 通路 [22],因此,在 EMLA-ALK 融合基因所导致的 NSCLC 中,这些通路也有可能活化。 Koivunen 等 [15] 和 Li 等 [23] 研究发现,ALK 抑制剂可抑制 MEK/ERK、[23] 研究发现,ALK 抑制剂可抑制 MEK/ERK、[23] 研究发现,ALK 抑制剂可抑制 [21] 和 Li 等 [23] 研究发现,ALK 抑制剂可抑制 [23] 和 Li 等 [23] 研究发现,ALK 抑制剂可抑制 [23] 和 Li 等 [23] 可究发现,ALK 抑制剂可抑制 [23] 和 Li 等 [23] 可识的 [23] 和 Li 等 [23]

根据国际癌症研究中心(International Agency for Research on Cancer, IARC)2005年公布的数据, 全球每年有120万肺癌新发病例。按照肺癌患者中 85% 为 NSCLC^[24], 而以 NSCLC 中 3% ~ 7% 为 EMLA-ALK 阳性估算,世界上 EMLA-ALK 阳性患者每 年可增加 30 000 ~ 70 000 例。Shaw 等[14] 挑选了 141 例至少具有两项如下特征的 NSCLC 患者:亚 裔、女性、无吸烟史或轻度吸烟、腺癌。根据之前的 研究[13,15], EMLA-ALK 阳性的 NSCLC 患者以女性居 多,然而在这项研究中,尽管入选的女性患者几乎是 男性患者数量的两倍,但男性 EML4-ALK 阳性者的 比例远高于女性(23% vs 9%)。另外,该研究还发 现,在不吸烟或轻度吸烟的 NSCLC 患者中, EGFR 突变和 EML4-ALK 阳性的患者分别为 32% 和 22%。 而在 EGFR 野生型的不吸烟或轻度吸烟 NSCLC 患 者中, EML4-ALK 阳性者占到 33%。这就意味着在 非 EGFR 突变的不吸烟和轻度吸烟 NSCLC 患者中 约 1/3 含有 EML4-ALK 融合基因。同时,这项研究 还指出:在 EGFR-TKI 耐药的 EGFR 突变患者中, EML4-ALK 阳性的患者达 10%, 提示 EML4-ALK 的 存在可能与 EGFR-TKI 耐药有关。由此可见,在特 定 NSCLC 患者中相当比例的患者可能为 EML4-ALK 阳性,这使得寻求一种能够抑制 EML4-ALK 融合基 因的药物显得尤为重要。

3 Crizotinib 治疗 NSCLC 患者的 I 期临床试验

Crizotinib 是一种口服的 ALK 选择性抑制剂。它最初是作为一种 c-MET 抑制剂来研发,后来发现其对 ALK 也有很好的抑制作用,是一种对 ALK 和 MET 均有效的小分子抑制剂,它能与 ATP 竞争性结合 ALK 的胞内酪氨酸催化区域。细胞实验^[25]证明,crizotinib 在一定浓度范围内对间变性大细胞淋巴瘤、成神经细胞瘤及 NSCLC 的某些 ALK 扩增或易位的细胞株有抑制作用。目前,crizotinib 治疗 EMLA-ALK 阳性 NSCLC 患者的临床试验正在世界各国展开。

在 Kwak 等^[26]的 I 期临床试验中, crizotinib 使多数 *EML4-ALK* 阳性 NSCLC 患者的肿瘤缩小或维持稳定。该研究入组了 82 例 *EML4-ALK* 融合基因阳性的 NSCLC 患者,口服 crizotinib 250 mg,每日 2次,28 d 为一个周期,直至疾病进展或出现不能耐受的不良反应。入组患者在经过 6.4 个月的治疗后,46 例获得部分缓解,1 例完全缓解,即客观有效率(objective response rate, ORR)为 57%,27 例(33%)患者疾病稳定(stable disease,SD)。在该数据发表时仍有 63 例还在 crizotinib 进行治疗,预计 6个月 PFS 为 72%,而中位 PFS 还尚未统计。

2011 年 6 月,在美国芝加哥召开的 ASCO (American Society of Clinical Oncology)会议上,Camidge 教授^[27]公布了一项研究结果,该研究人组的 NSCLC 患者例数达 119 例,中位年龄为 51 岁(21~79 岁),57%的患者不吸烟,97%为腺癌。研究对不同人群的 ORR 进行了比较(表 1),到目前为止,人组患者中 23 例死亡,2 例失访,并无治疗相关死亡的报道;共 94 位患者(79%)可进行 OS 分析。Crizotinib 治疗 8 周后,患者的疾病控制率为 79%,16 周时疾病控制率 67%,治疗的中位有效时间为 48 周。这项临床试验中,服用 crizotinib 的 *EML4-ALK* 阳性 NSCLC 患者 PFS 达 10 个月,ORR 为 61%,该研究的数据仍在不断更新中。与 NSCLC 二线化疗药物仅 10% 有效率相比^[28], crizotinib 在 *EML4-ALK* 阳性患者中的高有效率令人鼓舞。

同年的 ASCO 会议上, Shaw 等^[29]将 I 期临床试验中人组的经 crizotinib 治疗的 82 位 *EML4-ALK* 阳性患者与 37 例未接受 crizotinib 治疗的 *EML4-ALK* 阳性患者及 253 例 ALK 「/EGFR - 患者进行了比较。82 例经 crizotinib 治疗的 *EML4-ALK* 阳性患者,其 1年时总生存率(overall survival, OS)为 77%, 2 年时

为 64%, 中位 OS 还未统计。而 OS 不受性别(P= 0.35)、种族(亚洲与非亚洲人群,P=0.46)、吸烟史 (吸烟与不吸烟,P = 0.82)、年龄(≥60岁与<60 岁,P=0.93)等影响。37 例未接受 crizotinib 治疗 的 ALK 阳性对照患者中, 化疗的 1 年和 2 年生存率 分别为 73% 和 33%, 中位 OS 为 20 个月。在 crizotinib 作为二、三线治疗的 32 例 EML4-ALK 阳性患者 中,总体生存明显优于 24 例二线化疗的 EML4-ALK 阳性对照患者(P=0.004),1年生存率分别为71% 和 46%, 2 年生存率分别为 61% 和 9%。而中位 OS 在 EML4-ALK 阳性治疗组还未统计,在 EML4-ALK 阳性对照组为11个月。123位 EML4-ALK 阴性对照 组患者经二线化疗后,其1年与2年总体生存率分 别为 49% 和 33%, 中位 OS 为 11 个月(表 2)。虽然 I 期临床试验还未统计出 EML4-ALK 阳性 crizotinib 治疗组患者的中位 OS,但不难看出,EML4-ALK 阳性 患者在经过 crizotinib 治疗后的 OS 较两个对照组有 显著延长的趋势。

表 1 Crizotinib I 期临床试验中 NSCLC 患者的 ORR

组别	n/N	ORR(%)
年龄		
≥65 岁	11/16	69
<65 岁	60/100	60
前期治疗		
未经治疗	12/15	80
接受1种治疗且有转移灶	21/35	60
接受过至少2种治疗	38/66	58
人种		
亚裔	28/34	82
非亚裔	43/82	52

表 2 I 期临床试验 *EML4-ALK* 阳性二线/三线 crizotinib 治疗(A)组与 *EML4-ALK* 阳性二线化疗(B)组及 *EML4-ALK* 阴性二线化疗(C)组患者的 OS

组别 п		1年 OS	2 年 OS	中位 OS 时间
	n	(%)	(%)	(月)
A	32	71	61	_
В	24	46	9	11
C	123	49	33	11

I期试验显示, crizotinib治疗相关的常见不良 反应为恶心/呕吐、腹泻、视力障碍、水肿(外周性与 局限性)及便秘,多为轻中度。发生外周性水肿的 患者在采取保护性措施或利尿剂治疗后可明显缓解。总体说来,与传统化疗的骨髓抑制相比, crizotinib 在临床试验中显示出较好的安全性与耐受性。

4 Crizotinib 治疗 NSCLC 患者的 Ⅱ 期临床试验

除了 Ⅰ期试验外,另有一 Ⅱ期单臂试验(PRO-FILE 1005 [30]正在进行。该项试验涵盖了 12 个国 家 57 个地区的经 FISH 证实为 EMLA-ALK 阳性的 NSCLC 患者,预计入组 400 位患者。入组条件为: 在接受至少一种化疗方案后病情进展的患者,以及 在 PROFILE 1007 中作为对照组接受单药化疗后疾 病进展的患者。但未接受过化疗的 EML4-ALK 阳性 患者不能入选该试验。这项试验的首要终点为 ORR。这些患者口服 crizotinib 250 mg,每日2次, 21 d为一个周期。每6 周根据 RECIST 1.1 标准评 价肿瘤对治疗的反应,每3周根据欧洲癌症治疗研 究组织(European Organization for Research on Treatment of Cancer, EORTC)的生活质量问卷 QLQ-C30/ QLQ-LC13 v3 评估患者的不良反应及患者报告的临 床结局(patient reported outcome, PRO)。2011 年 ASCO 会议上, Crinò 等[31]公布了这项临床试验的初 步结果:136 例患者进行了药物安全性评估,109 位 患者进行了临床结局评价,76 例患者进行了肿瘤治 疗效果的评价。这项试验入组患者的中位年龄为 52 岁(28~82 岁),其中94%为腺癌,68%为非吸烟 患者,53%为女性患者,93%的患者接受过两种以上 (1~9种)化疗。患者服用 crizotinib 治疗的平均时 间为9周,且88%的患者仍在接受治疗。经过 crizotinib 治疗后,76 例患者中63 位(83%)肿瘤缩小, 其中41 例患者肿瘤缩小≥30%,7 例患者确定为疾 病进展。

该项临床试验中,经 crizotinib 治疗的患者最常见的不良反应为恶心(46%)、视力障碍(45%)、呕吐(39%)、腹泻(29%),多数为1~2级。3~4级的不良反应仅在15%的患者中出现,主要为谷丙转氨酶升高、呼吸困难及中性粒细胞减少。9例死亡的患者中2例死亡原因为肺炎,考虑可能与治疗相关。据患者报告的临床结局来看,患者的疼痛、咳嗽、呼吸困难、劳累等10多项症状在经过2个周期的治疗后得到明显改善,只有便秘项在治疗后加重。就目前II期临床试验公布的数据,crizotinib 在 EML4-ALK 阳性 NSCLC 患者中使用较安全且耐受性好,可以减轻患者的临床症状,并有确切的抗肿瘤活性。

5 Crizotinib 治疗 NSCLC 患者的Ⅲ期临床试验

由于I期、II期的临床试验收到了较好的效果,且

不良反应小,患者耐受性好,接下来的Ⅲ期临床试验应运而生。2009年12月开始的一项试验(PROFILE 1007)³²将 crizotinib与标准单药化疗,即与培美曲赛或多西他赛进行比较,所有人组患者均为用 FISH 法证实的 *EMLA-ALK* 阳性晚期 NSCLC 患者,该试验还要求患者之前只接受过一种含铂类药物的双药化疗。试验预计人组 318 位患者,首要终点为 PFS。

2011 年初,另一项将 crizotinib 作为一线治疗与铂类/培美曲赛联合化疗进行比较的临床试验已在 *ALK* 阳性的 NSCLC 患者中展开(PROFILE 1014)⁵³³,预计入组 334 位患者,以 PFS 为首要终点。

6 EML4-ALK 阳性 NSCLC 患者对 crizotinib 的耐药情况

2010年, Choi 等^[34]报道了1例 EMLA-ALK 阳性 的 NSCLC 患者,在经过5个月 crizotinib 治疗后疾病 恶化,在比较患者用药前痰液及疾病再度恶化后的 胸水时,发现患者用药后 EML4-ALK 融合基因出现 了两种点突变(C1156Y和L1196M),可能与crizotinib 的耐药有关。这两种突变独立发生,不会在一 个细胞中同时存在。小鼠 BA/F3 细胞实验结果发 现, crizotinib 对 EML4-ALK 阳性 BA/F3 细胞的生长 抑制为浓度依赖性,而含有 C1156Y 或 L1196M 突变 的 EML4-ALK 阳性 BA/F3 细胞对 crizotinib 的敏感 性明显下降,且 L1196M 突变的细胞耐药性强于 C1156Y 突变的细胞。Western blotting 检测结果显 示, crizotinib 可以明显抑制 EML4-ALK 阳性 BA/F3 细胞 ALK 的酪氨酸磷酸化,而在 C1156Y 和 L1196M 突变的 BA/F3 细胞中, crizotinib 对其抑制 作用明显下降。小鼠在体实验也得出了与细胞离体 试验相同的结果,即 C1156Y 和 L1196M 突变的 EML4-ALK 阳性小鼠对 crizotinib 不敏感,且 L1196M 突变小鼠对该药物敏感性较 C1156Y 突变小鼠更

EMLA-ALK 的 L1196M 突变与 EGFR 的 T790M 突变、BCR-ABL 的 T315I 突变等所导致的酪氨酸激酶抑制剂耐药相似,为均看家位点的突变,使药物与目标蛋白酪氨酸激酶域的相互作用发生障碍,从而使药物作用难以发挥。但 EMLA-ALK 的 C1156Y 突变导致 crizotinib 耐药的机制至今不明确。

7 Crizotinib 治疗 NSCLC 临床转化的展望

EGFR 抑制剂在 EGFR 突变患者中的疗效得到 Ⅲ期临床试验证实用了将近 10 年时间^[35]。相比之 下,从 2007 年第一次在 NSCLC 中发现 *EML4-ALK* 就目前的临床试验结果来看, EMIA-ALK 融合基因阳性的患者服用 crizotinib 治疗有效率高、PFS 长、毒性反应小。Crizotinib 是否能够在临床上取代传统化疗作为 EMIA-ALK 融合基因阳性 NSCLC 患者的一线治疗药物还有待进一步的研究。如何在众多的 NSCLC 患者中高效准确地筛选出带有 EMIA-ALK 融合基因的患者,以及如何克服 crizotinib 耐药的瓶颈,是今后研究亟待解决的问题。另外,虽然C1156Y 突变引起 crizotinib 耐药的机制仍是一个谜,但 Katayama 等[36] 发 现, NVP-TAE684、AP-26113、IPI-504、17-AGG 等药物对 L1196M 突变的耐药 H3122 细胞株有效,这对 EMIA-ALK 阳性的NSCLC 患者来说又是一个喜讯,但这些药物在耐药的 EMIA-ALK 阳性患者中的效果及安全性仍有待实践检验。

[参考文献]

- [1] Sasaki T, Rodig SJ, Chirieac LR, et al. The biology and treatment of EML4-ALK non-small cell lung cancer [J]. Eur J Cancer, 2010, 46(10): 1773-1780.
- [2] Janku F, Stewart DJ, Kurzrock R. Targeted therapy in non-small cell lung cancer is it becoming a reality? [J]. Nat Rev Clin Oncol, 2010, 7(7): 401-414.
- [3] Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small cell lung cancer [J]. Nature, 2007, 448(7153): 561-566.
- [4] Butrynski JE, D' Adamo DR, Hornick JL, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor [J]. N Engl J Med, 2010, 363(18): 1727-1733.
- [5] Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma [J]. N Engl J Med, 2011, 364(8): 775-776.
- [6] Pollmann M, Parwaresch R, Adam-Klages S, et al. Human EML4, a novel member of the EMAP family, is essential for microtubule formation [J]. Exp Cell Res, 2006, 312(17): 3241-3251.
- [7] Pulford K, Morris SW, Turturro F. Anaplastic lymphoma kinase

- proteins in growth control and cancer [J]. J Cell Physiol, 2004, 199(3): 330-358.
- [8] Takahashi T, Sonobe M, Kobayashi M, et al. Clinicopathologic features of non-small cell lung cancer with EMLA-ALK fusion gene [J]. Ann Surg Oncol, 2010, 17(3): 889-897.
- [9] Choi YL, Takeuchi K, Soda M, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer [J]. Cancer Res, 2008, 68(13): 4971-4976.
- [10] Takeuchi K, Choi YL, Soda M, et al. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts [J]. Clin Cancer Res, 2008, 14(20): 6618-6624.
- [11] Crystal AS, Shaw AT. New targets in advanced NSCLC: EML4-ALK [J]. Clin Adv Hematol Oncol, 2011, 9(3): 207-214.
- [12] Shinmura K, Kageyama S, Tao H, et al. EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas [J]. Lung Cancer, 2008, 61(2): 163-169.
- [13] Inamura K, Takeuchi K, Togashi Y, et al. EMIA-ALK fusion is linked to histological characteristics in a subset of lung cancers [J]. J Thorac Oncol, 2008, 3(1): 13-17.
- [14] Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small cell lung cancer who harbor EML4-ALK [J]. J Clin Oncol, 2009, 27(26): 4247-4253.
- [15] Koivunen JP, Mermel C, Zejnullahu K, et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer [J]. Clin Cancer Res, 2008, 14(13): 4275-4283.
- [16] Wong DW, Leung EL, So KK, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS [J]. Cancer, 2009, 115 (8): 1723-1733.
- [17] Soda M, Takada S, Takeuchi K, et al. A mouse model for EMIA-ALK-positive lung cancer [J]. Proc Natl Acad Sci U S A, 2008, 105(50): 19893-19897.
- [18] Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer [J]. Cell, 2007, 131(6):1190-1203.
- [19] Takeuchi K, Choi YL, Togashi Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer [J]. Clin Cancer Res, 2009, 15(9): 3143-3149.
- [20] Wong DW, Leung EL, Wong SK, et al. A novel KIF5B-ALK variant in non-small cell lung cancer [J]. Cancer, 2011, 117(12): 2709-2718.
- [21] Garber K. ALK, lung cancer, and personalized therapy: Portent of the future? [J]. J Natl Cancer Inst, 2010, 102(10): 672-675.
- [22] Palmer RH, Vernersson E, Grabbe C, et al. Anaplastic lymphoma kinase: Signalling in development and disease [J]. Biochem J, 2009, 420(3): 345-361.
- [23] Li Y, Ye X, Liu J, et al. Evaluation of EML4-ALK fusion proteins in non-small cell lung cancer using small molecule inhibitors [J]. Neoplasia, 2011, 13(1): 1-11.
- [24] Herbst RS, Heymach JV, Lippman SM. Lung cancer [J]. N Engl J Med, 2008, 359(13); 1367-1380.
- [25] Mcdermott U, Iafrate AJ, Gray NS, et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors [J]. Cancer Res, 2008, 68(9): 3389-3395.

- [26] Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small cell lung cancer [J]. N Engl J Med, 2010, 363(18): 1693-1703.
- [27] Camidge DR, Bang Y J, Kwak E L, et al. Progression-free survival (PFS) from a Phase I study of crizotinib (PF-02341066) in patients with ALK-positive non-small cell lung cancer (NSCLC).
 [C/OL]// the 2011 ASCO Annual Meeting, Mccormick place, Chicago, June 3-7,2011[2012-06-22] http://www.oncuview.tv/portals/0/linkedfiles/ASCO_2011_Camidge.pdf.
- [28] Gridelli C, Ardizzoni A, Ciardiello F, et al. Second-line treatment of advanced non-small cell lung cancer [J]. J Thorac Oncol, 2008, 3(4): 430-440.
- [29]Shaw AT, Yeap BY, Solomon BJ, et al. Impact of crizotinib on survival in patients with advanced, ALK-positive NSCLC compared with historical controls [C/OL]// the 2011 ASCO Annual Meeting, Mccormick place, Chicago, June 3-7, 2011[2012-06-22] http://meeting. ascopubs. org/cgi/content/abstract/29/15 _ suppl/ 7507.
- [30] ClinicalTrials gov. An investigational drug, PF-02341066, is being studied in patients with advanced non-small cell lung cancer with a specific gene profile involving the anaplastic lymphoma kinase (ALK) gene [R/OL]. United States, Food and Drug Administration, June 30,2009 [2012-06-22] http://clinicaltrials.gov/ct2/show/NCT00932451
- [31] Crinò L, Kim D, Riely GJ, et al. Initial phase II results with Crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC): PROFILE 1005 [C/OL]// the 2011 ASCO Annual Meeting, Mccormick place, Chicago. (2011-06-03) [2012-06-22] http://meeting. ascopubs. org/cgi/content/abstract/29/15 _ suppl/7514.
- [32] ClinicalTrials gov. An investigational drug, PF-02341066 is being studied versus standard of care in patients with advanced non-small cell lung cancer with a specific gene profile involving the anaplastic lymphoma kinase (ALK) gene [R/OL]. United States, Food and Drug Administration. (2009-06-30) [2012-06-22] http://clinicaltrials.gov/ct2/show/NCT00932893.
- [33] ClinicalTrials gov. A clinical trial testing the efficacy of crizotinib versus standard chemotherapy pemetrexed plus cisplatin or carboplatin in patients with ALK positive non squamous cancer of the lung (PROFILE 1014) [R/OL]. United States, Food and Drug Administration. (2010-06-29) [2012-06-22] http://clinicaltrials.gov/ct2/show/NCT01154140
- [34] Choi YL, Soda M, Yamashita Y, et al. EMLA-ALK mutations in lung cancer that confer resistance to ALK inhibitors [J]. N Engl J Med, 2010, 363(18): 1734-1739.
- [35] Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma [J]. N Engl J Med, 2009, 361(10): 947-957.
- [36] Katayama R, Khan TM, Benes C, et al. Therapeutic strategies to overcome Crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK [J]. Proc Natl Acad Sci U S A, 2011, 108(18): 7535-7540.

[收稿日期] 2012-04-01 [修回日期] 2012-05-29 [本文编辑] 王莹