doi: 10.3872/j.issn.1007-385X.2013.02.014

• 基础研究 •

KLK7 siRNA 对胃癌 AGS 细胞的抑制作用

苏晓峰¹,王文苓²,蔡洪培¹(1. 第二军医大学 长征医院 消化科,上海 200003; 2. 解放军第 302 医院 门诊部,北京 100039)

[摘 要] **旬** 6 :体外合成 4 条靶向人组织激肽释放酶 7(kallikrein-related peptidase 7, *KLK*7)基因的片段,并筛选最有效 siRNA片段,观察沉默 *KLK*7 表达对胃癌 AGS 细胞增殖和凋亡的影响。 3 法:设计 4 条靶向 *KLK*7 的 siRNA 片段(KLK7-siRNA-416、KLK7-siRNA-596、KLK7-siRNA-474、KLK7-siRNA-795),瞬时转染 AGS 细胞,qRT-PCR 检测各干扰组 *KLK*7 mRNA 表达的变化,Western blotting 检测 AGS 细胞中 HK7 蛋白(由 *KLK*7 基因编码)的表达,MTT 法检测转染后 AGS 细胞的增殖,流式细胞术检测 AGS 细胞的细胞周期及凋亡。 **结果**:4 条 KLK7-siRNA 片段中以 KLK7-siRNA-416 的干扰效率最高,KLK7-siRNA-416 组 *KLK*7 mRNA 表达率显著低于 NC 组[$(0.32\pm0.049)\%$ $vs(0.93\pm0.071)\%$, P<0.01], KLK7-siRNA-416 组转染 48 h后 AGS 细胞 HK7 蛋白的表达水平显著降低[$(1.18\pm0.198)vs(0.52\pm0.096)$,P<0.01]。 KLK7-siRNA-416 转染 72 h后对 AGS 细胞增殖的抑制率达(37.70±0.12)%(P<0.05),该转染阻滞 AGS 细胞于 G_0/G_1 期但不影响 AGS 细胞的凋亡。 **结论**: KLK7-siRNA 沉默 *KLK*7 的表达可抑制 AGS 细胞的增殖,可阻滞细胞于 G_0/G_1 期,对细胞凋亡的作用不明显。

[关键词] 胃癌; RNA 干扰; KLK7; AGS 细胞; 增殖; 细胞周期

「中图分类号] R735.2; R730.54

「文献标志码] A

「文章编号] 1007-385X(2013)02-0207-05

Inhibitory effect of KLK7 siRNA on gastric cancer AGS cell lines

Su Xiaofeng¹, Wang Wenling², Cai Hongpei¹(1. Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China; 2. Department of Outpatient, 302 Military Hospital of China, Beijing 100039, China)

[**Abstract**] **Objective:** Four siRNA fragments targeting kallikrein-related peptidase 7 (*KLK7*) were synthesized *in vitro*. The most effective siRNA was selected, and the effect of silencing KLK7 expression on proliferation and apoptosis of gastric carcinoma AGS cells was observed. **Methods:** Four siRNA fragments targeting KLK7 (KLK7-siRNA-416, KLK7-siRNA-596, KLK7-siRNA-474 and KLK7-siRNA-795) were designed and transiently transfected into AGS cells. qRT-PCR was used to detect the expression of *KLK7* mRNA in each interference group. Western blotting was used to detect the protein expression of HK7 (encoded by KLK7 gene). AGS cell proliferation, and the cells cycle and apoptosis after transfection were detected by MTT assay and flow cytometry, respectively. **Results:** Among four KLK7-siRNAs, KLK7-siRNA-416 showed the highest interference efficiency. The ratio of *KLK7* mRNA expression in KLK7-siRNA-416 group was significantly lower than those in control group ([0.32 ± 0.049)% vs [0.93 ± 0.071], P < 0.01). The protein expression of HK7 in KLK7-siRNA-416 group after transfection for 48 h was significantly decreased ([1.18 ± 0.198] vs [0.52 ± 0.096], P < 0.01). The cell proliferation of KLK7-siRNA-416 group was significantly inhibited after transfection for 48 h, with inhibition rate of (37.70 ± 0.12)% , P < 0.05. Cell cycles were blocked in G_0/G_1 phase by transfection. However, no impact was found in AGS cell apoptosis. **Conclusion:** The silencing expression of KLK7 by KLK7-siRNA inhibited the AGS cell proliferation and block cell cycles in G_0/G_1 phase. However, no impact was found in AGS cell apoptosis.

[Key words] gastic carcinoma; RNA interference; KLK7; AGS cell; proliferation; cell cycle

[Chin J Cancer Biother, 2013, 20(2): 207-211]

[[]作者简介] 苏晓峰(1984 –),男,山东省济宁市人,硕士生,主要从事消化系统肿瘤方面的研究。E-mail;xiaofengsu@live.com

胃癌(gastric carcinoma)是人类第4大恶性肿 瘤,全世界欠发达和发达地区的胃癌发病率不 同[1];我国胃癌发病率约占世界的42%左右,特别 是农村地区,胃癌发病率更高。尽管近年来有关胃 癌的诊疗取得一定进展,但胃癌患者病死率仍然较 高[2-3],一些关键因素如遗传、外部环境、饮食以及基 因的相互作用在胃癌发生发展中起到重要作用[4], 因此,进一步探寻胃癌发病的分子机制及治疗手段 仍然具有重要意义。人组织激肽释放酶(kallikreinrelated peptidase, KLK)基因家族有 15 个成员,这些 基因及其相应的编码蛋白分别被命名为: KLK1~ KLK15 和 HK1~HK15。既往研究[5]证实, KLK7 在 皮肤正常脱屑、表皮细胞黏附、皮肤损伤修复中发挥 作用。新近研究^[6]显示,KLK 基因家族不仅表达于 皮肤、前列腺等组织,在人类各系统肿瘤组织中也有 表达。KLK 基因通过复杂的调控机制,参与了各种 肿瘤的生长,发挥着不同的分子生物学功能[78]。既 往研究^[9]及本课题组前期工作已证实, KLK7 蛋白 (HK7)表达于胃癌细胞株和胃癌组织,且AGS细胞 株中 KLK7 mRNA 及其蛋白 HK7 表达最高,而正常 胃黏膜上皮细胞和癌旁组织不表达。本实验通过体 外将 4 个靶向 KLK7 基因的 siRNA(KLK7-siRNA)转 染 AGS 细胞株,筛选出沉默效果最佳的 KLK7siRNA,观察其对胃癌细胞生物学影响,初步了解 KLK7 在胃癌中的作用,为胃癌治疗提供新的细胞模 型和思路。

1 材料与方法

1.1 细胞与主要试剂

胃癌 AGS 细胞株由上海长征医院肿瘤科张霞 博士惠赠,源自美国模式菌种收集中心。细胞用含 10% 胎牛血清的 RPMI 1640 培养基置于 37 ℃、5% CO, 细胞培养箱中培养,细胞贴壁 85%~95%时用 含 EDTA-胰酶消化约1~2 min,显微镜下观察贴壁 细胞变化、更换培养基,完成传代过程,每2~3 d 传 代一次。RPMI 1640 培养基购自 Biowest 公司, TRIzol购自 Invitrogen 公司, 逆转录试剂盒(Revert Aid[™] K1622)购自 Fermentas 公司, gRT-PCR 试剂盒 (THUNDERBIRD SYBR®qPCR Mix)购自东洋纺(上 海)公司,BCA蛋白质定量试剂盒(Pro#23227)购自 ThermoPierce 公司, KLK7 兔抗人多克隆抗体 (GTX103548、GTX100700、GTX103548)购自 Genetex 公司, Lipofectamine™ 2000 购自 Invitrogene 公司, DMSO 购自 Amresco 公司。主要仪器 Real Time PCR 仪(ABI PPRISM 7300)购自 Life Technologies 公司,

MilliQ 超纯水系统购自密理博公司。

设计合成 KLK7-siRNA:根据 Genebank 提供的人 KLK7(NM_005046.3)mRNA 的序列,设计了 4 对 siRNA,由上海吉玛公司合成。干扰序列分别为 KLK7-416: CCACACAGACCCAUGUUAATT; KLK7-474: CAUCCAUGGUGAAGAAAGUTT; KLK7-596: GUGGAUGUCAAGCUCAUCUTT; KLK7-795:CCCAGGAGUCUACACUCAATT。

1.2 AGS 细胞转染

实验分为空白细胞对照组(control group,常规培养、无处理因素的 AGS 细胞组)、NC siRNA 组(negative control,非特异性 siRNA 转染细胞阴性对照组)、siRNA oligo 干扰组和 Mock 组(转染试剂对照组)。常规培养 AGS 细胞,10 cm 培养皿中培养至约85%融合时接种6孔板,生长至40%~50%开始转染实验。按照 Lipofectamine TM 2000 转染试剂说明书操作,5 μl Lip2000(脂质体转染试剂)加入250 μl无血清 1640 培养基,放置 5 min,5 μl 各组siRNA 加入250 μl 无血清 1640 培养液,轻轻混合后放置 15~20 min。总管吸取 500 μl 放入 6 孔板内,培养 0、24、48 h,分别收样,所得细胞根据需要行qRT-PCR、Western blotting 法检验干扰效率,并筛选沉默效率最高的 siRNA,进行后续实验。

1.3 qRT-PCR 检测细胞中 KLK7 mRNA 的表达

六孔板每孔加入500 µl~1 ml TRIzol 吹打裂解 细胞,常规抽提细胞总 RNA,测定 D260、D260 值计算 RNA浓度,所得RNA进行cDNA合成。逆转录使用 20 μl 体系: Primer 1μl、DEPC H,O + RNA1 1μl、5× 缓冲液 4 μl、10 mmol/L dNTP MIX 2 μl、RNase Inhibitor 1 μl、RT 酶 1 μl。体系 42 ℃水浴 1 h,70 ℃ 孵育 5 min。人 KLK7 上游引物: 5'-AGTGCTG-GAGAAGAGTCAGT-3',下游引物:5'-AAAGGTGGT-GAATAAGGG T-3';β-actin 上游引物:5'-AAGGTGA-CAGCAGTCGGTT-3′,下游引物:5′-TGTGTGGACTTG GGAGAGG-3'。gRT-PCR 反应体系:引物 0.8 μl、 2×缓冲液 (SYBR MIX)10 μl、ddH₂O7.2 μl、cDNA 2 μl,共计 20 μl。上机,扩增曲线分析 95 ℃ 5 min, 95 ℃ 5 s→60 ℃ 30 s),溶解曲线分析(95 ℃ 15 s, 60 ℃ 10 s→95 ℃ 15 s)40 个循环。对 qRT-PCR 结 果进行计算[10]。

1.4 Western blotting 检测细胞中 HK7 蛋白的表达 六孔板每孔加入 100 μl RIPA 裂解液,4℃下裂 解 20 min,刮下细胞置冰上充分裂解 20 min。加入 30 μl 4×缓冲液放入干燥热水器 15 min,超声、离

心,分离到的蛋白放入-80 ℃冰箱保存。依次配置

下上层分离胶、积层胶,每孔上样量 30 μ l,电泳,溴酚蓝条带至玻璃板下沿约 0.5 cm 时终止电泳。裁剪适当大小 PVDF 膜,在 280 mA 恒定电流下,电转移 90 min;孵育一抗(KLK7 兔抗人抗体,1:1 000 稀释),4 ℃过夜,隔日室温孵育二抗(羊抗兔 lgG,1:2 500)90 min;1:1混合 ECL 发光液 A 液与 B 液进行发光显色。Image Lab 4.0,进行数据分析。

1.5 MTT 法检测 KLK7-siRNA 对 AGS 细胞增殖的 影响

选择最佳 KLK7-siRNA 片段转染 AGS 细胞株,分别在 24、48、72、96 h 时间点观察干扰后 AGS 细胞增殖情况,实验期间换液处理 2~3 次。按 4 个时间点每孔加 $10~\mu$ l MTT(5~g/L),继续孵箱培养 4 h,吸干液体后加入 DMSO,酶标仪检测 570~nm 处光密度值(D)。细胞抑制率(%)=(对照组 D 值 - 实验组 D 值)/对照组 D 值 \times 100% 。

1.6 流式细胞术检测 KLK7-siRNA 对 AGS 细胞凋亡的影响

选择 MTT 实验所得干扰效率最佳的时间,以流式细胞术检测 AGS 细胞凋亡情况。不含 EDTA 胰酶消化并搜集 AGS 细胞,加入 200 μl 缓冲液悬起细胞;加入 2.5 μl Annexin V-FITC,旋涡混匀器混匀,室温、避光反应 15 min;取 200 μl 悬浮细胞,加 5 μl PI,行流式细胞仪检测。

1.7 统计学处理

实验数据以 $\bar{x} \pm s$ 表示,采用 SPSS18.0 统计软件,两组独立数据间比较采用 t 检验;细胞周期间差异的统计分析采用 χ^2 检验,以 P < 0.05 或 P < 0.01 表示差异具有统计学意义。

2 结 果

2.1 FAM 标记的 siRNA 高效转染 AGS 细胞株

使用上海吉玛公司商品化 FAM 标记的阴性对照 siRNA oligo(绿色荧光标记的通用阴性对照 FAMsiRNA)检测 AGS 细胞转染效率,荧光显微镜下可见转染的 AGS 细胞呈绿色荧光(图1)。本实验所得结果与其他实验结果[11]一样均显示 AGS 细胞具有较好的转染效果, siRNA 能够有效转染进入细胞内。

2.2 KLK7-siRNA-416 转染有效下调 AGS 细胞 KLK7 mRNA 表达

qRT-PCR 法检测结果如图 2 所示: NC 组、KLK7-siRNA-416 组、KLK7-siRNA-596 组、KLK7-siRNA-474 组、KLK7-siRNA-795 组转染 24 h 后与空白对照组相比, KLK7 mRNA 表达率分别是(0.93 ± 0.071)%、(0.32 ± 0.049)%、(0.51 ± 0.096)%、

 (0.96 ± 0.032) %、 (0.9 ± 0.046) %,转染 48 h 后为 (1.04 ± 0.023) %、 (0.63 ± 0.0359) %、 (0.83 ± 0.0815) %、 (1.08 ± 0.0622) %、 (1.2 ± 0.0593) %。以上结果显示,KLK7-siRNA-416 转染 AGS 细胞24 h 后的 *KLK7* mRNA 表达最低,说明 KLK7-siRNA-416 可以有效下调 *KLK7* mRNA 表达(P < 0.05)。

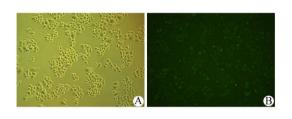


图 1 FAM-siRNA 高效转染 AGS 细胞株(×100) Fig. 1 FAM-siRNA effectively transfected into AGS cells(×100)

A: Under a light microscope; B: Under a fluorescence microscope

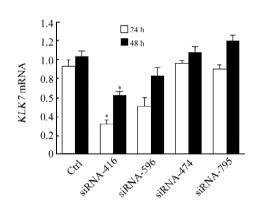
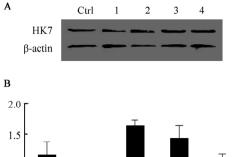



图 2 qRT-PCR 法检测 AGS 细胞 KLK7 mRNA 的表达 Fig. 2 KLK7 mRNA expression in AGS cells detected by qRT-PCR

* P < 0.05 vs Ctrl

KLK7-siRNA-416 转染有效抑制 HK7 蛋白的 表达

NC 组、KLK7-siRNA-416 组、KLK7-siRNA-474 组、KLK7-siRNA-596 组、KLK7-siRNA-795 组转染 48 h后行 Western blotting 法检测 HK7 蛋白表达,条带经灰度分析软件量化分析,各组转染 AGS 细胞后 HK7 蛋白表达依次为: $1.18 \pm 0.198 \cdot 0.52 \pm 0.096 \cdot 1.64 \pm 0.098 \cdot 1.44 \pm 0.212 \cdot 1.05 \pm 0.139 (如图 3),与 NC 组相比,KLK7-siRNA-416 更加显示出抑制蛋白表达的优势(<math>P < 0.05$)。结合 qRT-PCR 检测结果,说明实验成功筛选出有效下调 KLK7 基因表达的干扰序列为 KLK7-siRNA-416,在 mRNA 和蛋白水平均能有效抑制 KLK7 基因表达。

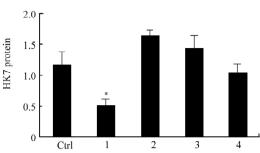


图 3 Western blotting 检测 KLK7-siRNA 转染后 HK7 蛋白表达

Fig. 3 Expression of HK7 protein after KLK7-siRNA transfection

A: Western blotting; B. Image J quantitative analysis

1: KLK7-siRNA-416; 2: KLK7-siRNA-596;

3: KLK7-siRNA-474; 4: KLK7-siRNA-795

* P < 0.05 vs Ctrl

2.4 KLK7-siRNA-416 显著抑制 AGS 细胞的增殖

KLK7-siRNA-416 瞬时转染 AGS 细胞后细胞增殖呈现缓慢抑制,镜下细胞形态呈梭状,少数呈杆状。MTT 法连续检测 4 d,其中在 72 h后 AGS 细胞生长抑制最为显著,说明 KLK7-siRNA-416 可以明显抑制细胞增殖。图 4 显示,24 h 细胞增殖抑制率为(15.85 ± 0.17)%,48 h 抑制率为(23.88 ± 0.21)%、72 h 抑制率为(37.70 ± 0.12)%。

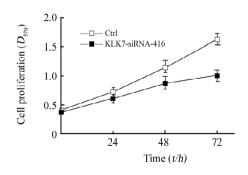


图 4 MTT 法检测 KLK7-siRNA-416 转染 对 AGS 细胞增殖的影响

Fig. 4 Effect of KLK7-siRNA-416 transfection on proliferation of AGS cells detected by MTT assay

2.5 KLK7-siRNA-416 阻滞 AGS 细胞于 G₀/G₁ 期

实验结果如图 5 所示, KLK7-siRNA-416 组与NC 对照组相比,转染 48 h后 AGS 细胞的 G_0/G_1 期比例明显增加[(55.94 ± 2.01)% vs(49.58 ± 1.24)%, P<0.05],图中未见凋亡峰出现,说明 NC组与 KLK7-siRNA-416 组对细胞凋亡的影响未见明显改变,提示 KLK7 沉默后对凋亡影响较小或不大,但可阻滞细胞于 G_0/G_1 期。

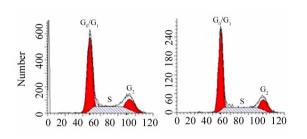


图 5 流式细胞术检测 KLK7-siRNA-416 转染对 AGS 细胞周期的影响

Fig. 5 Impact of KLK7-siRNA-416 transfection on AGS cell cycle detected by flow cytometry

3 讨论

RNA 干扰(RNA interference, RNAi)作为成熟 的基因研究技术,于转录后水平对靶基因表达进行 特异性调控[12]。该技术操作简单、可调控性强、靶 向作用明显,可以高效抑制靶基因表达[13]。目前细 胞研究的转染试剂种类较多,脂质体转染试剂能够 将外源性基因整合至细胞内使之共表达, Lipofectamine[™]2000 是目前较经济和实用的转染载体, 具有较高的转染效率,广泛应用于基因转染研 究[14-15]。转染试剂"携"siRNA 片段入胞后,由于片 段设计差异导致相同基因 siRNA 特异性不同,不能 有效沉默或降解靶基因,本实验中亦出现了3条 KLK7-siRNA 片段作用较差,如 KLK7-siRNA-474 片 段转染后 KLK7 蛋白出现轻微上调,不排除 KLK7siRNA 转染后出现脱靶点效应、以及通过其他机制 引起基因表达上调。引起脱靶现象的原因有很多, 如模体匹配、长 dsRNA 等均能使所合成 siRNA 片段 与非靶基因结合[16]。由于人体细胞内基因复杂性, 实际科研中 RNAi 允许出现一定程度碱基缺失和失 配,可以理解为脱靶效应风险是合理存在,但仍需通 过改进设计、优化化学修饰等避免脱靶效应或非特 异性沉默现象的发生[17-18]。

近年来,新的肿瘤药物不断问世,使胃癌的生存期较前得到一定改善,但进展期胃癌患者5年生存

率仍然偏低。随着肿瘤机制研究深入,一些关键分子或信号通路药物被认为是一种新的有前途的治疗手段^[19],例如靶向 HER2 受体的药物曲妥珠单抗能够显著改善肿瘤患者总体生存期^[20],总之,肿瘤靶向治疗将成为未来肿瘤治疗的重要方向。既往实验结果及前期研究已经表明,*KLK7* 存在于胃癌组织和细胞中,在不同类型胃癌组织中表达具有差异,并可能扮演了重要作用。

本实验成功筛选出沉默 KLK7 效率最高的 KLK7-siRNA-416 片段, 瞬时转染入胃低分化腺癌 AGS 细胞株,发现该 KLK7 沉默后不论 mRNA 水平 还是 HK7 蛋白水平表达均有效下调,同时转染 AGS 细胞具有明显的增殖抑制改变,说明 KLK7 参与胃 癌细胞增殖变化。实验进一步证实,引起增殖变化 的原因是转染后的细胞株阻滞于 Go/G, 期, 而 AGS 细胞的凋亡几乎没有变化,这说明 KLK7-siRNA-416 沉默 KLK7 基因主要通过影响细胞周期的 DNA 合 成前期而抑制细胞增殖。正常细胞生长过程中受到 各种因素影响发生 DNA 损伤,若损伤后不能及时修 复,可导致基因组不稳定性大大增加,而细胞周期紊 乱或改变是基因组不稳定的中心环节之一,结果导 致不稳定细胞进一步癌变或直接参与肿瘤发生与发 展^[21-22]。KLK7 基因对胃癌细胞周期具有显著影响 的结果为今后 KLK7 与胃癌关系的研究提供了实验 依据,KLK7有可能成为肿瘤诊治的潜在靶点。

[参考文献]

- [1] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012 [J]. CA Cancer J Clin, 2012, 62(1): 10-29.
- [2] 陈万青, 张思维, 郑荣寿, 等. 中国肿瘤登记地区 2007 年肿瘤发病和死亡分析 [J]. 中国肿瘤, 2011, 20(3): 162-169.
- [3] 郑荣寿, 张思维, 吴良有, 等. 中国肿瘤登记地区 2008 年恶性肿瘤发病和死亡分析 [J]. 中国肿瘤, 2012, 21(1): 1-12.
- [4] 李鹏飞, 冯靖宇, 严滢滢, 等. 胃癌易感基因筛选及多基因危险度分析[J]. 环境与职业医学, 2011, 28(9): 531-534.
- [5] Komatsu N, Saijoh K, Toyama T, et al. Multiple tissue kallikrein mRNA and protein expression in normal skin and skin diseases [J]. Br J Dermatol, 2005, 153(2): 274-281.
- [6] Inoue Y, Yokobori T, Yokoe T, et al. Clinical significance of human kallikrein7 gene expression in colorectal cancer [J]. Ann Surg Oncol, 2010, 17(11): 3037-3042.
- [7] Lawrence MG, Lai J, Clements JA. Kallikreins on steroids: Structure, function, and hormonal regulation of prostate-specific antigen and the extended kallikrein locus [J]. Endocr Rev, 2010, 31 (4): 407-446.

- [8] Helo P, Cronin AM, Danila DC, et al. Circulating prostate tumor cells detected by reverse transcription-PCR in men with localized or castration-refractory prostate cancer; Concordance with cellsearch assay and association with bone metastases and with survival [J]. Clin Chem, 55(4): 765-773.
- [9] Shaw JL, Diamandis EP. Distribution of 15 human kallikreins in tissues and biological fluids [J]. Clin Chem, 2007, 53(8): 1423-1432.
- [10] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-(Delta Delta C(T)) method [J]. Methods, 2001, 25(4): 402-408.
- [11] Liu YL, Bai WT, Luo W, et al. Downregulation of NDRG1 promotes invasion of human gastric cancer AGS cells through MMP-2
 [J]. Tumour Biol, 2011, 32(1); 99-105.
- [12] Scherer LJ, Rossi JJ. Approaches for the sequence-specific knock-down of mRNA [J]. Nat Biotechnol, 2003, 21(12): 1457-1465.
- [13] Sato S, Hagihara M, Sugimoto K, et al. Chemical approaches untangling sequence-specific DNA binding by proteins [J]. Chemistry, 2002, 8(22): 5066-5071.
- [14] Mo RH, Zaro JL, Ou J, et al. Effects of Lipofectamine 2000/siRNA complexes on autophagy in hepatoma cells [J]. Mol Biotechnol, 2012, 51(1): 1-8.
- [15] Liu YL, Bai WT, Luo W, et al. Downregulation of NDRG1 promotes invasion of human gastric cancer AGS cells through MMP-2
 [J]. Tumor Biol, 2011, 32(1): 99-105.
- [16] Lew-Tabor AE, Kurscheid S, Barrero R, et al. Gene expression evidence for off-target effects caused by RNA interference-mediated gene silencing of ubiquitin-63E in the cattle tick rhipicephalus microplus [J]. Int J Parasitol, 2011, 41(9): 1001-1014.
- [17] Ma Y, Creanga A, Lum L, et al. Prevalence of off-target effects in drosophila RNA interference screens [J]. Nature, 2006, 443 (7109): 359-363.
- [18] Snøve O Jr, Holen T. Many commonly used siRNAs risk off-target activity [J]. Biochem Biophys Res Commun, 2004, 319(1): 256-263.
- [19] Chari RV. Targeted cancer therapy: Conferring specificity to cytotoxic drugs [J]. Acc Chem Res, 2008, 41(1): 98-107.
- [20] Purmonen TT, Pänkäläinen E, Turunen JH, et al. Short-course adjuvant trastuzumab therapy in early stage breast cancer in Finland: cost-effectiveness and value of information analysis based on the 5-year follow-up results of the FinHer Trial [J]. Acta Oncol, 2011, 50(3): 344-352.
- [21] Zhou BB, Elledge SJ. The DNA damage response: Putting check-points in perspective [J]. Nature, 2000, 408(6811): 433-439.
- [22] Hoeijmakers JH. Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases [J]. Mech Ageing Dev, 2007, 128(7/8): 460-462.

[收稿日期] 2012-11-25 [修回日期] 2013-01-28 [本文编辑] 王莹,黄静怡