Expression of PD-1 in T-cell acute lymphoblastic leukemia cells and its clinical significance
Article
Figures
Metrics
Preview PDF
Reference
Related
Cited by
Materials
Abstract:
[Abstract] Objective: To investigate the expression and clinical significance of PD-1 molecule in tumor cells (T-ALL cells) derived from the patient with T-cell acute lymphoblastic leukemia (T-ALL). Methods: T-ALL cells from one patient and PBMCs from four healthy volunteers provided by the Department of Hematology in Jiangsu Provincial Hospital of Traditional Chinese Medicine in December 2015, and human 293T/PD-1 cells provided by Persongen Bio Therapeutics (Suzhou) Co., Ltd. were used for this study. The mouse T-ALL xenograft model was constructed by injecting T-ALL cells into tail vein of B-NDG mice, and flow cytometry was used to verify whether the cells obtained from the spleen of transplanted mice were mainly consisted of T-ALL cells. Flow cytometry was used to study the protein expression of PD-1 in T-ALL cells, and RT-PCR was applied to further verify the mRNA expression of PD-1 in T-ALL cells. The PD-1 gene in T-ALL cells was sequenced by SNP genotyping to detect whether the DNA sequence of PD-1 gene changed. PD-1 inhibitor was used in vitro to study their effects on proliferation, apoptosis, and the mRNA expression levels of related factors in T-ALL cells. Results: The mouse T-ALL xenograft model was successfully constructed and verified by flow cytometry as T-ALL. PD-1 was highly expressed at both mRNA and protein levels in T-ALL cells (all P<0.01). A C-to-T mutation was detected in the fifth exon of the PD-1 gene. PD-1 inhibitor had no significant effect on proliferation and apoptosis of T-ALL cells in vitro; PD-1 inhibitor up-regulated the mRNA expression of tumor-suppressor protein IGFBP3 and decreased the mRNA expression of oncoprotein SULT1A3 (all P<0.01). Conclusion: PD-1 is highly expressed in T-ALL cells, and PD-1 could be used as a target for clinical diagnosis and treatment for T-ALL.
Keywords:
Project Supported:
Project supported by the National Natural Science Foundation of China (No. 81872431, No. 31471283), National Key Research and Development Program of China (No.2016YFC1303403), the Collaborative Innovation Major Project (No. XYXT2015304), the Six Talent Peaks Project in Jiangsu Province (No. SWYY-CXTD-010), the Science and Technology Development Program of Jiangsu Province (No.BE2016809),and the Nanjing Science and Technology Development Program (No. 201503011, No.18030801126)