Abstract:
[Abstract] Objective: To investigate the expression of long non-coding RNA SNHG16 (lncRNA SNHG16) in colorectal cancer (CRC)tissues and cells, and to explore the mechanism of its regulation on the expression of mitochondrial glycerol-3-phosphate acyltransferase (GPAM) via sponging miR-128-3p. Methods: Sixty pairs of colorectal cancerous tissues and para-cancerous tissues that resected from CRC patients, who underwent surgery in the Department of Anorectal Surgery, Gansu Provincial People’s Hospital during Jan.2014 and Jan. 2017, were collected for this study; In addition, CRC cell lines (SW480, SW620, HCT116, Caco-2,DLD-1, HT29) and colonic epithelial cell line CCD841 were also collected for the study. The expression of SNHG16 in collected tissues and cell lines was determined by Real-time quantitative PCR (qPCR), and its correlation to the clinicopathological features of CRC patients was also analyzed.SW480 cells were transfected with miR-128-3p mimic, miR-128-3p inhibitor, and si-SNHG16, respectively, and then the mRNA expressions of miR-128-3p and SNHG16 were detected by qPCR, the protein expression of GPAM was determined by Western blotting,and the cell proliferation, apoptosis and invasion were detected by CCK-8 assay, colony formation assay, cell apoptosis assay and Transwell chamber assay, respectively. The binding between SNHG16 and miR-128-3p was validated with dual luciferase reporter gene assay and RNA Immunoprecipitation assay. For in vivo experiment, mouse model of SW480 cell exnograft was constructed, and the ef-fect of SNHG16 knockdown on the growth of exnograft was observed. Results: SNHG16 was found to highly expressed in human CRC tissues and cell lines (all P<0.01), and SNHG16 expression level was associated with lymph node metastasis, Duke's stage and patients’survival (all P<0.01). Knockdown of SNHG16 significantly inhibited CRC cell proliferation and invasion, and induced apoptosis (all P<0.01); After SNHG16 knockdown, the volume of exnograft was obviously reduced (P<0.05). Dual luciferase reporter gene assay and RNA Immunoprecipitation assay validated the interaction between miR-128-3p and SNHG16, and they were negatively correlated with each other in CRC patients (P<0.01). The SNHG16 regulated the expression of its down-stream gene GPAM via endogenously sponging miR-128-3p. Conclusion: SNHG16 regulates GPAM expression in CRC cells by sponging miR-128-3p, and SNHG16 and miR-128-3p may serve as potential targets for the diagnosis and treatment of CRC.